GAMA – Genetic Automated Machine learning Assistant<\/a><\/p>\n\n\n\nAccording to the official documents of GAMA, <\/p>\n\n\n\n
GAMA is a tool for Automated Machine Learning (AutoML). All you need to do is supply the data, and GAMA will automatically try to find a good machine learning pipeline<\/em>. A machine learning pipeline contains data preprocessing (e.g. PCA, normalization) as well as a machine learning algorithm (e.g. Logistic Regression, Random Forests), with fine-tuned hyper-parameter settings (e.g. number of trees in a Random Forest). GAMA uses multiple search procedures to implement the pipeline and also combines multiple tuned machine learning pipelines into an ensemble, which on average should help model performance. <\/p>\n\n\n\n This takes away the knowledge and labor-intensive work of selecting the right algorithms and tuning their hyper-parameters yourself. <\/p>\n\n\n\n
Installation:<\/strong><\/p>\n\n\n\nConsidering you already have pip, installing GAMA is very easy and straightforward. Just run the following line <\/p>\n\n\n\n <\/figure>\n\n\n\nOkay now let’s get started<\/strong><\/p>\n\n\n\nImport packages: GAMA, for now, provides AutoML for the following task:<\/p>\n\n\n\n
Binary Classification <\/li> Multiclass Classification<\/li> Regression <\/li><\/ul>\n\n\n\n First, we need to import the library. <\/p>\n\n\n\n <\/figure>\n\n\n\nFor both the classification task, we have to import the following package: <\/p>\n\n\n\n <\/figure>\n\n\n\nAnd for the regression task, we have to import the following package: <\/p>\n\n\n\n <\/figure>\n\n\n\n Other libraries to be imported: <\/p>\n\n\n\n <\/figure>\n\n\n\nStep 1: Getting the data and splitting it into train, test: <\/strong><\/p>\n\n\n\nWe need to manually import the data and split it into train and test data. <\/p>\n\n\n\n <\/figure>\n\n\n\nStep 2: Create an object of GAMAClassifier Class and fit the model<\/strong><\/p>\n\n\n\nWe need to create an object of GAMAClassifier Class and define the required parameters. <\/p>\n\n\n\n <\/figure>\n\n\n\n Parameters: <\/p>\n\n\n\n
max_total_time: Time in seconds that can be used for the fit call.<\/li> scoring : Specifies the metrics to optimize.<\/li> n_jobs : The number of parallel processes that may be created to speed up to fit.<\/li><\/ul>\n\n\n\n Now, we need to fit the model on the train data as shown below: <\/p>\n\n\n\n <\/figure>\n\n\n\nStep 3: Prediction<\/strong><\/p>\n\n\n\nThis is the step in which the model make predictions on the test data: <\/p>\n\n\n\n <\/figure>\n\n\n\nThat’s it, you are done with GAMA. This is amazing right!! <\/p>\n\n\n\n
<\/p>\n\n\n\n <\/figure>\n\n\n\nCode Export(optional)<\/strong><\/p>\n\n\n\nIt is possible to have GAMA export the final model definition as a Python file<\/p>\n\n\n\n <\/figure>\n\n\n\n4) Conclusion on GAMA:<\/strong><\/p>\n\n\n\n1) GAMA involves just 3 steps to complete the whole AutoML Pipeline. <\/p>\n\n\n\n
2) The average taken for data preprocessing, hyper-parameter selection and training is 4 mins and 30 sec. <\/p>\n\n\n\n
I used Google Colab to run this tool so results vary according to which system you are using. <\/p>\n\n\n\n
3) The accuracy achieved in default configuration is 83%. <\/p>\n\n\n\n
4) Ease to understand and implement score: <\/p>\n\n\n\n
I will give this library 8\/10 for ease to understand and implement. It is very simple to implement as it involves only 3 major steps. The official document provided is very easy to understand. It provides a detailed explanation of the API and also provides benchmark results<\/strong> of GAMA and other famous AutoML tools. Which is interesting to explore. But, you won’t find any good blogs regarding GAMA. So, the official document and this blog is the only way to go. <\/p>\n\n\n\n5) Pros and Cons of GAMA:<\/strong><\/p>\n\n\n\n The pros are: <\/p>\n\n\n\n